13 research outputs found

    RIPK3 activation leads to cytokine synthesis that continues after loss of cell membrane integrity

    Get PDF
    Necroptosis is a form of programmed cell death that is defined by activation of the kinase RIPK3 and subsequent cell membrane permeabilization by the effector MLKL. RIPK3 activation can also promote immune responses via production of cytokines and chemokines. How active cytokine production is coordinated with the terminal process of necroptosis is unclear. Here, we report that cytokine production continues within necroptotic cells even after they have lost cell membrane integrity and irreversibly committed to death. This continued cytokine production is dependent on mRNA translation and requires maintenance of endoplasmic reticulum integrity that remains after plasma membrane integrity is lost. The continued translation of cytokines by cellular corpses contributes to necroptotic cell uptake by innate immune cells and priming of adaptive immune responses to antigens associated with necroptotic corpses. These findings imply that cell death and production of inflammatory mediators are coordinated to optimize the immunogenicity of necroptotic cells

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D

    No full text
    Necroptosis is a form of programmed cell death defined by activation of the kinase receptor interacting protein kinase 3 and its downstream effector, the pseudokinase mixed lineage kinase domain-like (MLKL). Activated MLKL translocates to the cell membrane and disrupts it, leading to loss of cellular ion homeostasis. In this study, we use a system in which this event can be specifically triggered by a small-molecule ligand to show that MLKL activation is sufficient to induce the processing and release of bioactive IL-1β. MLKL activation triggers potassium efflux and assembly of the NLRP3 inflammasome, which is required for the processing and activity of IL-1β released during necroptosis. Notably, MLKL activation also causes cell membrane disruption, which allows efficient release of IL-1β independently of the recently described pyroptotic effector gasdermin-D. Taken together, our findings indicate that MLKL is an endogenous activator of the NLRP3 inflammasome, and that MLKL activation provides a mechanism for concurrent processing and release of IL-1β independently of gasdermin-D

    Evaluation of recombinant Mycoplasma hyopneumoniae P97/P102 paralogs formulated with selected adjuvants as vaccines against mycoplasmal pneumonia in pigs

    Full text link
    Pig responses to recombinant subunit vaccines containing fragments of eight multifunctional adhesins of the Mycoplasma hyopneumoniae (Mhp) P97/P102 paralog family formulated with Alhydrogel® or Montanide™ Gel01 were compared with a commercial bacterin following experimental challenge. Pigs, vaccinated intramuscularly at 9, 12 and 15 weeks of age with either of the recombinant formulations (n=10 per group) or Suvaxyn® M. hyo (n=12), were challenged with Mhp strain Hillcrest at 17 weeks of age. Unvaccinated, challenged pigs (n=12) served as a control group. Coughing was assessed daily. Antigen-specific antibody responses were monitored by ELISA in serum and tracheobronchial lavage fluid (TBLF), while TBLF was also assayed for cytokine responses (ELISA) and bacterial load (qPCR). At slaughter, gross and histopathology of lungs were quantified and damage to epithelial cilia in the porcine trachea was evaluated by scanning electron microscopy. Suvaxyn® M. hyo administration induced significant serological responses against Mhp strain 232 whole cell lysates (wcl) and recombinant antigen F3P216, but not against the remaining vaccine subunit antigens. Alhydrogel® and Montanide™ Gel01-adjuvanted antigen induced significant antigen-specific IgG responses, with the latter adjuvant eliciting comparable Mhp strain 232 wcl specific IgG responses to Suvaxyn® M. hyo. No significant post-vaccination antigen-specific mucosal responses were detected with the recombinant vaccinates. Suvaxyn® M. hyo was superior in reducing clinical signs, lung lesion severity and bacterial load but the recombinant formulations offered comparable protection against cilial damage. Lower IL-1β, TNF-α and IL-6 responses after challenge were associated with reduced lung lesion severity in Suvaxyn® M. hyo vaccinates, while elevated pathology scores in recombinant vaccinates corresponded to cytokine levels that were similarly elevated as in unvaccinated pigs. This study highlights the need for continued research into protective antigens and vaccination strategies that will prevent Mhp colonisation and establishment of infection. © 2014 Elsevier Ltd

    Protection against a chlamydial respiratory challenge by a chimeric vaccine formulated with the Chlamydia muridarum major outer membrane protein variable domains using the Neisseria lactamica porin B as a scaffold.

    No full text
    Chlamydia trachomatis is the most frequently detected sexually transmitted bacterial pathogen in the world. Attempts to control these infections with screening programs and antibiotics have failed and, therefore, a vaccine is the best approach to control this epidemic. The Chlamydia major outer membrane protein (MOMP) is the most protective subunit vaccine so far tested. Protection induced by MOMP is, in part, dependent on its tertiary structure. We have previously described new recombinant antigens composed of the Neisseria lactamica PorB engineered to express the variable domains (VD) from Chlamydia muridarum MOMP. Here we tested antigens containing each individual MOMP VD and different VD combinations. Following immunization, mice were challenged intranasally with C. muridarum. Our results show that three constructs, PorB/VD1-3, PorB/VD1-4, and PorB/VD1-2-4, elicited high serum IgG titers in vivo, significant IFN-γ levels upon T cells re-stimulation in vitro, and evidence of protective immunity in vivo. PorB/VD1-3, PorB/VD1-4, and PorB/VD1-2-4 immunized mice lost less body weight, had lighter lungs, and decreased numbers of inclusion forming units (IFUs) in lungs than other PorB/VD construct tested and mock PBS-immunized mice. These results suggest that this approach may be a promising alternative to the use of MOMP in a Chlamydia vaccine
    corecore